• Votes for this article no votes for this yet
  • Dashboard Insight Newsletter Sign Up

Eight Principles of Data Visualization

Friday, August 17, 2012

The information below is from a great article outlining some key things to do when visualizing data. I particularly enjoy the analogies. Note that one of the first things pointed out is "What does Joe really need?". Understanding the need behind visualizing the data, why you are visualizing it, who you are presenting the data to is a crucial starting point to any data visualization initiative.

Imagine you are walking out of the office after a long day and your phone buzzes with a new email. Taking a quick glance, you see that it’s from Joe in operations: "Hey, wondering if you could run me a few numbers and put them in a nice chart to show how well our new store layouts are doing along with the latest sale promo we started last week. Need to put it into a presentation for the executive team next Monday. Thanks."

What does Joe really need? Where do you start? For anyone in a business environment who collects or manages some kind of raw data, tasks that are becoming more pervasive, the need to process that data into a human-usable form is increasingly common.

Visualizations, like the chart Joe asked for, are a great way to accomplish this, but they can be difficult to do properly, as anyone who has sat through a slide show presentation with an unreadable pie chart or vague growth projection graph can attest. As available data becomes more complex and extensive, weaving it into a visualization that invites engagement, understanding and decision-making is a bigger challenge, with a bigger opportunity for payoff.

Some of the traditional business standbys, like a one-off pie chart or simple line graph, even if done well, may not offer enough data to answer multi-faceted questions like Joe's. (See Figures 1 and 2.) How can we take visualizations to the next level, so they can take on the challenge of today's business complexity?

Get the Fundamentals Right

The first step is to back up and focus on the basics. If you have ever played a team sport with a good coach, you may recall that he or she spent a lot of time working on fundamentals. Trick plays or advanced moves don’t win a game without solid fundamentals supporting them, and data visualization is no different. The most complex, data-rich graphic is useless unless it follows basic principles of good visualization:

  1. Understand the problem domain. If you are producing visualization for your own use or that of your department, chances are good you already understand the area you will be working in. But if, as in our scenario with Joe, the visualization is for another department, or even an external stakeholder such as a customer or partner, you may need to ask questions and do more research to understand what is involved. In this case, you should investigate when these initiatives started, whether any others are in progress at the same time and what metrics the executive team will use to determine success.
  2. Get sound data. This may seem obvious, but good data is at the heart of any effective visualization. Make sure the data you select is as accurate as possible, and that you have a sense of how it was gathered and what errors or inadequacies may exist. For example, maybe our store sales data for Joe is only current as of the last close of business, thanks to an older cash register system. Make sure you get relevant data and enough of it. We probably want not only sales data after these changes, but also the month or quarter before and even the same period in past years for comparison purposes. Above all, to create an effective visualization, you need to understand the meaning of the data you are working with. This can be a challenge if it has been stored as raw numbers. In this case, we may need to determine the store visitor counting method being used to know what those numeric tallies mean.

Figure 1

Figure 2

For the rest of the article click here

Credit: Ryan Bell, Information Management

Tweet article    Stumble article    Digg article    Buzz article    Delicious bookmark      Dashboard Insight RSS Feed
 
Other articles by this author

Discussion:

No comments have been posted yet.

Site Map | Contribute | Privacy Policy | Contact Us | Dashboard Insight © 2017